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Abstract 

The accuracy of target passive localization is influenced by the placement of signal 
receiving stations; therefore, many studies have been performed to optimize station 
placement. However, most of the present placement methods focus on the localiza-
tion error of one target, and if the exact position of the target cannot be determined, 
but only the range of the target activity is known, how to study the localization station 
placement in a region is a problem that needs to be solved. This paper proposes a grey 
wolf optimization algorithm based on the regional target error model to solve the opti-
mal station placement problem. Firstly, a regional target localization error model 
is established using the measured TDOA, and the overall error matrix within a region 
is derived. Then, by taking the trace of the error matrix as a criterion, the objective 
function is established to find the optimal location of the receiving station by grey 
wolf optimizer. The optimization parameters are also improved to increase the global 
search ability of the algorithm. Finally, the feasibility and reliability of the overall error 
model and the grey wolf algorithm proposed are verified by experiments from multiple 
perspectives. The station placement method proposed in this paper can effectively 
solve the localization problem of targets that are only known to be in a general activity 
region in advance, which is more realistic.

Keywords: Grey wolf optimizer, Optimization parameter, Overall error matrix, Regional 
localization error, Station placement

1 Introduction
Passive localization technology uses signal receiving stations to obtain signals in space 
and determine the location of the signal source. This technology plays an important role 
in multiple fields such as radar, hydroacoustic, and wireless sensor networks. Common 
methods of passive localization are the use of angle of arrival (AOA), time difference of 
arrival (TDOA), frequency difference of arrival (FDOA), and hybrid measurements to 
achieve position of the target source. Among them, the method of localization based 
on TDOA of the target signal to different receiving stations has high accuracy. It also 
requires fewer processing parameters and is widely used in many localization devices 
[1].

The accuracy of passive localization depends not only on the localization algorithm 
but also heavily on the position of the receiving stations. Research has shown that the 

*Correspondence:   
paper_hdx@126.com

1 Information Engineering 
University, High-Tech 
Development Zone, 
Zhengzhou 450000, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-024-02349-5&domain=pdf
http://orcid.org/0000-0002-6139-6489


Page 2 of 21Wang et al. J Wireless Com Network         (2024) 2024:35 

location of the station that receives and processes the signal determines the theoretical 
minimum localization error [2]. The selection of station positions is influenced by vari-
ous aspects such as regional terrain, communication conditions and resource scheduling 
[3, 4]. Therefore, the problem of station placement has become an important direction in 
the study of passive localization.

For the station placement problem based on TDOA localization, scholars generally 
establish the Cramér–Rao lower bound (CRLB) matrix, the inverse of the Fisher infor-
mation matrix (FIM) [1], that represents the localization error in different scenario. 
Then, they establish an objective function based on the A optimization criterion (or 
choose D, E criteria) to minimize the CRLB matrix to solve the optimization problem 
[5]. Research and articles that solve this optimization problem can be divided into two 
categories. One is to find the interrelationship of the independent variables by the con-
ditions of the constraints, and this independent variable is the location of the receiving 
station. This category of research generally obtains quantitative conclusions containing 
some special geometric relationships among the positions of the receiving stations [6–
13]. The most common of these is the law of station placement without any constraints, 
and research has shown that the position of the receiving stations should be uniformly 
distributed around the target in order to minimize the localization error [6]. The other 
major category is the optimization algorithms solely to solve this optimization problem 
when the station placement problem becomes complex. Since the objective function of 
this problem is a non-convex one, it is difficult to find the geometrically special solutions 
of station positions by constraint conditions. Therefore, an optimal placement needs to 
be found by an optimization algorithm [5, 14–18]. This class of research focuses on a 
specific localization scenario, such as the area where the deployed station is constrained. 
Zhao used Boolean vectors to solve the optimal station placement problem in localiza-
tion by transforming a non-convex problem into a semi-definite programming problem 
to find an optimal solution [16]. Meng proposed a motion coordination approach to 
solve this nonlinear placement optimization problem [18]. They all strive in their opti-
mization algorithms to find a station deployment method in a fast way that makes the 
localization error smaller.

However, for the placement problem, most of the research is aimed at minimizing 
the localization error for a specific target, which requires us to know the approximate 
location of the target in advance. In actual situations, we usually can only determine the 
region where the target may appear, so we cannot accurately estimate the target location 
and can only give a region range. Therefore, we believe that it is necessary to estimate 
the position of a target that may appear in a region, which is a real problem that needs 
to be solved urgently. The problem of station placement for multi-target localization has 
already appeared in the research of Xu [11], and we draw on this research idea to explore 
how to optimize station placement when all the targets in a region need to be localized. 
There are similarities between multiple targets and the fact that targets may appear at 
many locations within a region. We draw on this line of research to explore the station 
placement problem in the localization of target regions.

Studying such an optimization problem, the non-convexity of its objective function 
becomes higher and much more complex than the case of station placement in single 
objective localization. Therefore, we would like to use the improved grey wolf algorithm 
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for station placement optimization [19]. Grey wolf algorithm is a swarm intelligence 
algorithm proposed in recent years and has been used in many optimization problems. 
Daniel has proposed the optimal wavelet-based homomorphic image fusion with grey 
wolf optimization in fusion technology, which uses the grey wolf algorithm to make a 
feature of the fusion optimal [20]. Ojha proposed an intelligent data routing mecha-
nism for wireless sensor networks based on multi-objective grey wolf optimization for 
selecting the optimal intersection point in IoT intelligent systems [21]. Shi et al. used an 
improved grey wolf optimization algorithm for adaptive multi-UAV path planning [22]. 
All of their researches use the better optimization search and more accurate global opti-
mal solution of the grey wolf optimization algorithm to fit the needs of practical prob-
lems, which are gradually being studied in the areas of resource scheduling and strategy 
selection [23, 24]. However, these studies are mainly focused on their scenario and do 
not apply to our proposed station placement problem. Currently, there are few studies 
on station placement optimization for target localization in a region, and there are no 
articles that use the grey wolf algorithm to solve this realistic problem. Therefore, we are 
interested in proposing a regional error model and consider the grey wolf optimization 
algorithm for station placement optimization.

The innovations and contributions of this paper are mainly in two aspects. Firstly, a 
more realistic localization scenario is considered, that is, the target may appear within a 
region. We derive the CRLB matrix of the target region error, and use the overall error as 
the objective function to derive the optimal location of the receiving stations. Secondly, 
for this objective function, we use the grey wolf algorithm for station placement optimi-
zation. We analyse the performance of the grey wolf algorithm to optimize the station 
positions and increase the global search capability of the algorithm by improving the 
optimization parameters. In this paper, we also verify the proposed model and algorithm 
in detail through relatively sufficient experiments.

The rest of the paper is organized as follows. Section  2 mainly introduces the error 
model of this paper and derives the CRLB matrix of the target overall regional error. 
Section 3 focuses on solving the optimal station placement problem using the grey wolf 
algorithm. Section 4 analyses the performance of solving the station placement problem 
with the grey wolf algorithm for the overall target localization, and improves the opti-
mization parameter to enhance the global search capability. Section  5 is a simulation 
experiment from multiple perspectives to verify the reliability of the model and algo-
rithm proposed in this paper. Section 6 is the conclusion.

2  Regional localization error model
We consider the placement of receiving stations to locate the targets of radiation sig-
nals. The possible locations of the target are within a known region in Fig. 1, which was 
acquired through the accumulation of our prior experience. The locations where receiv-
ing stations are not arbitrary, but limited to a specific range by geography, signal beam 
angle, etc. [8].

2.1  TDOA localization model

In a planar localization scenario, assume that the point P is the target, which may appear 
at any position in the region T at position u = [x, y]T ,u ∈ T  . It is assumed that there 
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are N receiving stations, denoted as S = [s1, s2, . . . , sN ]
T , where the location of the i-th 

receiving station is si = [xi, yi]
T , (i = 1, 2, . . . ,N ) . The distance between the i-th receiv-

ing station and the target P is

We set the receiving station s1 with i = 1 to be the primary station (or the reference sta-
tion), then the distance difference between the target to si and s1 is

It is to note that ri1 is the distance difference, which is obtained by multiplying the meas-
ured TDOA by the constant c (the speed of light). We consider them to be consistent 
and therefore use distance difference to denote the directly measured quantity in the 
subsequent expressions. If r̂i1 denotes the measured value of ri1 , containing the noise ni1 , 
then

Denote r = [r21, . . . , rN1]
T , r̂ = r̂21, . . . , r̂N1

T , n = [n21, . . . , nN1]
T , and transform the 

localization measurement model into matrix form as

2.2  Regional localization error model of target

Equations (1)–(4) describe the localization model only for one target. However, the sce-
nario considered in this paper is that the target may appear at a location within T, while 
u is unknown. Therefore, we should analyse the localization model for all positions in T, 
and calculate the localization error for each position in T.

First of all, we have to be clear that in the background of localization that we men-
tioned, it is one target that may appear at a certain location in the whole T region. 

(1)ri =

√

(u− si)
T (u− si).

(2)ri1 = ri − r1, (i = 2, 3, . . . ,N ).

(3)r̂i1 = ri1 + ni1, (i = 2, 3, . . . ,N ).

(4)r̂ = r + n.

Fig. 1 Schematic diagram of the placement of receiving stations for localization scenarios
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However, when we study the localization error, it is the error at each location that is 
studied, so we can think of it as localization of several targets all over the T region. That 
is, the several targets are multiple possibilities for that one target.

We assume that the number of possible targets at all locations in T is M, and they 
are 

{

u(1),u(2), . . . ,u(M)
}

 . From the point of view of calculus, the number of possi-
ble locations of the target is actually infinite. That means the set of targets is actually 
{

u(1),u(2), . . . ,u(M)
}

�M→∞ . Since the number of targets tends to positive infinity will 
cause inconvenience in handling error equations and matrix operations, we still use an 
infinite series of M targets as the basis of calculation. The M targets should be evenly 
filled in the entire T region. Then, the localization model in (4) is changed to the overall 
localization model in the region

When computing the measurements in the whole T region, we write them in the form 
of an augmentation matrix R =

[

r̂(1), r̂(2), . . . , r̂(M)
]

 , which is an M × (N − 1) matrix. In 
practical measurements, the signal-to-noise ratio (SNR) is affected by the distance. It 
will affect the variance of the noise, but the effect is small and can be negligible [9, 15]. 
Therefore, we consider that the measured noise variance is the same for all receiving sta-
tions, which is written as

where 1 denotes a matrix where all elements are 1.
We start with a Gaussian model of the distance difference measure and obtain a condi-

tional probability density function for R over the overall region as

where U =
[

u(1)
T
,u(2)

T
, . . . ,u(M)T

]T
 denotes the augmentation matrix of all target 

locations with dimension 2M × 1 . If the unbiased estimate of the target location is Û , its 
CRLB matrix is denoted as CRLBU , the information matrix as FU , then

The information matrix can be written as

Matrix J is the Jacobian matrix as

(5)r̂(j) = r(j) + n(j),
(

j = 1, 2, . . . ,M
)

.

(6)
Qn = E

[

nnT
]

= E
[

(ni − n1)(ni − n1)
T
]

= σ1
21M(N−1) + diag

(

σ
(1)
2

2
, σ

(2)
2

2
, . . . , σ

(M)
2

2
, σ

(1)
3

2
, σ

(2)
3

2
, . . . , σ

(M)
3

2
, . . . , σ

(1)
N

2
, σ

(2)
N

2
, . . . , σ

(M)
N

2
)

= σ 21M(N−1) + diag
(

σ 2, . . . , σ 2
)

M(N−1)
,

(7)f (R�U ) =

exp

{

− 1
2

[

R̂ − R(U)

]T
Qn

−1
[

R̂ − R(U)

]

}

√

(2π)M(N−1) det (Qn)
,

(8)E

[

(

Û −U
)(

Û −U
)T

]

≥ CRLBU = FU
−1.

(9)FU = E

[

(

∂ ln f (R�U )

∂U

)(

∂ ln f (R�U )

∂U

)T
]

= JTQn
−1J.
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where 0 denotes the N × 2 matrix of zeros. The individual partial derivatives in the 
matrix are expressed as

At this point, the error information matrix FU and its CRLB matrix are computed for the 
target position in the entire region. In this way, the localization error of the whole region 
can be characterized by the matrix CRLBU , where the subscript U denotes the set of 
points consisting of all targets in T.

It is necessary to clarify that the CRLBU matrix is a theoretical error matrix of all tar-
get measurements in the region, and it is not a simple splicing and augmentation of the 
error matrix for a single target, due to the possible correlation of the measured TDOA of 
the targets in the region. If we do a chunking of the Jacobian matrix in (10), it is indeed 
an augmented form of the Jacobian matrix for each target, but this is only derived by 
considering the receiving station returning measurements for one target at a time. Once 
the measured TDOA of a target is correlated, the other matrix blocks are not necessar-
ily 0-matrices. Therefore, when we adopt the A-criterion [5] (the principle of minimiz-
ing the trace of the error matrix) to constrain the error as the objective function, the 
regional measurement error consisting of the target locations is not equal to the sum of 
the measurement errors of individual targets, which can be expressed as

3  Optimization method
In single-target localization problems, people often use the error matrix to establish the 
objective function for optimization. In the same way, we utilize the error matrix CRLBU, 
derived from the regional overall error model, to establish the objective function. Using 
the A-optimality criterion to minimize the trace of the overall error matrix, the station 
placement optimization problem described in this paper can be formulated as

(10)J =















∂ r̂(1)

∂u(1)
T 0 . . . 0

0 ∂ r̂(2)

∂u(2)
T . . . 0

...
...

. . .
...

0 0 . . . ∂ r̂(M)

∂u(M)T















,

(11)

∂ r̂(j)

∂u(j)
T =











cos θ2(
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cos θi(
j) = xi−x(j)

�

�

xi−x(j)
�2

+
�

yi−y(j)
�2

sin θi(
j) =

yi−y(j)
�

�

xi−x(j)
�2

+
�

yi−y(j)
�2

,
�

j = 1, 2, . . . ,M
�

.

(12)Tr(CRLBU)  =
∑
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CRLB
u(j)
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.
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where B is a constrained region that limits the location of the receiving stations. This 
has been mentioned in Fig. 1. Due to the environment and the signal beam angle, etc., 
the receiving station can only be deployed in a specific region. Therefore, the station 
placement approach taken in this scenario is transformed into the optimization problem 
described in (13).

It is a highly non-convex problem for the reasons that (i) CRLB matrix contains infor-
mation on the measured values of multiple targets, which are all nonlinear functions of 
the independent variables; (ii) in the constraints, the region of the station placement is 
mostly irregular, resulting in potentially complex boundary conditions. Therefore, this 
is a highly non-convex optimization problem, which we choose the grey wolf optimizer, 
the more balanced in global search and local search, as the placement method in this 
paper to deal with.

3.1  Grey wolf optimizer

Grey wolf optimizer is a novel swarm intelligence optimization algorithm, which mainly 
simulates the hierarchy and hunting methods of grey wolf packs in nature [19, 25]. In the 
wolf pack, it is divided into α wolf, β wolf, δ wolf and ω wolf according to its hierarchy 
from high to low, which represent different classes. In the hunting process, the α wolf 
pack occupies the best position, which is the closest to the prey capture, the β wolf pack 
is the second, the δ wolf pack is the third. And the ω wolf pack is defined as the ordinary 
wolves, so they will move towards the position of the first three wolf packs until they 
capture the prey.

In the following, we briefly describe the grey wolf optimizer. Suppose there are L 
wolves in the pack, denoted by Z(1),Z(2), . . . ,Z(L) , where the position of the l-th wolf is 
Z(l) = [z1, z2, . . . , zD]

T (l)
 and its dimension is D. The top three wolves with the best posi-

tions in the pack are Z(α) , Z(β) and Z(δ) in order. We use Zt
(i) to denote the current posi-

tion of the i-th wolf and Zt
(p) to denote the current position of the target grey wolf, then 

the position of the i-th wolf at the next moment after it moves towards the target Zt
(p) is

The subscript t denotes the current moment, t+ 1 denotes the next moment, and the 
superscript (i, p) denotes the result of the action of the p-th wolf on the i-th wolf. A and 
K denote the step size and prey weight, respectively. A is a uniform random number 
within (−a, a) , and a is the convergence factor, which is a constant that decreases lin-
early from 2 to 0 with the number of optimization iterations; K is another random num-
ber on (0, 2) . From a practical perspective, the direction of the i-th wolf moving towards 
the target wolf is determined by K, and its moving distance is determined by A. Since 
the range of A is decreasing, it can be obtained that eventually it will be got closer to the 
target wolf.

(13)arg min
si ,i=1,2,...,N

Tr(CRLBU), s.t.si ∈ B,

(14)Zt+1
(i,p) = Zt

(p) − A
∥

∥

∥
KZt

(p) − Zt
(i)
∥

∥

∥
.
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Wolves will move in the direction towards the three wolves in the best position fol-
lowing the law, that is, the i-th wolf will move in a way of Zt+1

(i,α) , Zt+1
(i,β) and Zt+1

(i,δ) 
under the effect of α , β and δ . Therefore, we define its final position as

In this algorithm, the parameter ‖A‖ is decreasing from 2 to 0. Therefore, when ‖A‖ > 1 , 
the wolf individuals move away from the current optimal position and perform global 
search. When ‖A‖ < 1 , the wolf individuals move close to the current optimal position. 
This makes the algorithm capable of both global search and local search with only two 
optimization parameters, taking into account both aspects of optimal solution seeking 
and algorithmic complexity.

3.2  Optimal station placement method

The grey wolf optimizer is used to implement the optimal station placement problem in 
the scenario of this paper, mainly considering the high non-convexity of the objective 
function and the high computation volume due to the target regional error. Therefore, 
taking into account the global solution and the search complexity, we use the grey wolf 
optimizer, which steps are as follows.

Step 1 Determine the region T in which the target may appear. Select the number NS 
of wolf individuals and the maximum number of iterations Ni . Determine the range B 
for the distribution of stations.

Step 2 Perform initialization of the grey wolf population. Each station placement way 
is a position of each individual grey wolf, that is, one position S = [s1, s2, . . . , sN ]

T of N 
receiving stations represents one individual grey wolf. We initialize NS values of S in B, 
randomly initialize NS position values within the station region B.

Step 3 According to (9)–(11), the overall regional localization error Tr(CRLBU) is cal-
culated, which is the adaptation degree of grey wolves, called Fit [19]. Select the posi-
tions of the three wolves with the best fitness, namely, the smallest error, as wolf α , β and 
δ . Calculate their fitness Fitα , Fitβ and Fitδ , and optimal positions Sα , Sβ and Sδ are Z(α) , 
Z(β) and Z(δ) , respectively. The rest of the wolves are considered as wolf ω.

Step 4 According to (14)–(15), the hunting principle of grey wolves is used to calculate 
the moving position of wolves at the next moment, Zt+1

(i) , which is the position of all 
the remaining ω wolves, Sω . At this point, the positions of all wolves are updated. Then, 
return to step 3 to recalculate the adaptation of wolves until the end of the iteration.

Therefore, we obtain the location that makes the best fitness by iterating through the 
grey wolf optimization algorithm, Sα , which is the optimal solution for the station place-
ment we need.

4  Analysis of station placement methods based on grey wolf optimization
We propose to solve the station placement problem for regional target localization using 
the grey wolf optimization algorithm. With the steps in Sect. 3, we can implement this 
process. In the following, we will analyse the performance advantages that this algorithm 
brings in this problem.

(15)Zt+1
(i) =

Zt+1
(i,α) + Zt+1

(i,β) + Zt+1
(i,δ)

3
.
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4.1  Local and global solutions

For an optimization algorithm designed for a global optimal problem, one of the most 
important points is to avoid the solution of the problem from falling into local optimal-
ity. The localization error model of the target region developed in this paper is a function 
of a non-convex problem. When we set three receiving stations to localize multiple tar-
gets in a region, there are multiple minima in this error function, that is, there are multi-
ple local optimal solutions. Moreover, this convex function becomes more complicated 
when the region where the receiving stations are deployed is strictly limited. Therefore, 
when seeking the optimal location for this problem, it becomes easy to fall into local 
optimality.

The grey wolf optimization algorithm utilized in this paper does a good job of avoiding 
falling into a local optimum when dealing with this problem. The grey wolf algorithm is 
to record the positions of the three best wolves in each computation, which increases 
the consumption in memory but can be exchanged for more reliable results in the global 
problem. We assume that the station locations are in the entire solution space L . The 
local optimal locations are L1 , L2 , and L3 , and there is one global optimal location among 
them, as shown in Fig. 2. At this point, we use the swarm optimization algorithm and the 
grey wolf optimization algorithm for comparison. After initializing the population posi-
tion, if we record only one optimal position loc1 , then in the next iteration, it will move 
towards the closest local solution L1 with a large probability. However, if we record three 
optimal positions, loc1 , loc2 , loc3 . First, in the process of initializing them, there will be 
a certain probability to fall near the three local solutions, and at this time, in the next 
iteration, they will move towards the three local optimal positions loc1 , loc2 , loc3 with a 
larger probability. From this point of view, the idea of seeking the optimal three wolves 
in the grey wolf algorithm fits the case of multiple solutions at the location of our station 
deployment.

In addition, due to the variation of the optimization parameter A, there is a half prob-
ability that the wolves are located close to the current optimal solution (this may be the 
global optimum or the local optimum) and the other half of the probability that they 
are far away from the optimal solution for the global search. This is another measure of 
the algorithm in avoiding falling into local optimality. We know that for heuristic algo-
rithms, the best way to avoid falling into a local optimum is to use randomization. It is 
because within the system, the randomized selection is able to traverse the global in a 
better way in the absence of regular samples. In the context of the station deployment 
in this paper, the error modelling of the targets in the region may involve the number 
of targets on the order of 103 or more, and thus the error function will produce many 
extreme points. Global search in this scenario is essential. Compared with the direct 

Fig. 2 Schematic diagram of the solution space
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gradient descent in some optimization algorithms, the change of the value of A in (14) of 
the grey wolf algorithm fully reflects the stochastic global search process. The movement 
of the whole population balances the global search and the approach towards the local 
optimum under the control of A.

4.2  Cost consumption of algorithms

A corollary of global search is that it consumes a lot of time and computational cost. In 
case of our optimization problems, the time required to obtain the optimal solution is an 
important factor to consider. In this class of heuristic algorithms utilized in this paper, 
the optimal results are obtained by means of continuous iterative updating, so the com-
putational cost is often linked to the number of iterations and iteration time.

The time consumption of the algorithm can be roughly considered as the number of 
iterations multiplied by the time consumption of each iteration. In the following, we 
briefly describe the iteration consumption comparison between the grey wolf algorithm 
and the classical particle swarm optimization algorithm in solving the station placement. 

(A) Iteration time We know that the general principle of particle swarm optimization is 
that each flying particle provides the basis for the next move based on the combina-
tion of its best position and the best position of the population. Then, this process 
needs the optimal position of the whole population as a reference basis. The grey 
wolf algorithm used in this paper only uses the best three positions of the wolf pack, 
which greatly reduces the comparison calculation time in each iteration. Therefore, 
the grey wolf algorithm is advantageous in terms of the time of each iteration.

(B) Number of iterations In the iterations, the grey wolf algorithm records the optimal 
three positions at a time, whereas in the particle swarm optimization, only one best 
position is recorded at a time. Although it may be utilizing the best position of the 
population, this may increase the speed of convergence only for locally optimal 
solutions. When the problem has many locally optimal solutions, one best position 
is clearly not conducive to global search. That is, the particle swarm optimization 
needs to add greater random variation when we are assured that the overall optimi-
zation result is correct. At this point, recording only one optimal position at a time 
takes more time to seek the global optimum. In this way, the advantage of the grey 
wolf algorithm, which selects the three best populations, is highlighted.

4.3  Parameter improvement of grey wolf search

The station placement method in the paper is for the overall error of the target region 
and the error function contains a considerable number of target locations, which is 
highly non-convex, making it easy to fall into local solutions. In view of this, we consider 
improving the parameters of the grey wolf optimizer to achieve better global search 
capability.

From (14), we know that the convergence factor a, affecting the range of A, is linearly 
decreasing from 2 to 0, which causes the entire wolf pack to move as follows. Within 
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the first half of the number of iterations, there is a 50% probability of moving away from 
the optimal wolf and a 50% probability of moving closer to the optimal wolf; within the 
second half of the number of iterations, all of them move closer to the optimal wolf. In 
this process, although 50% of the wolves within half of the number of iterations are in 
global search, this does not certainly meet our requirement for the overall global search 
volume. When we need to increase the global search process of the algorithm, we can 
increase the duration of A value greater than 1. So we modify the convergence factor a 
to the following form:

In (16), Ni is the maximum number of iterations and k is the adjustment factor, satisfy-
ing k ∈ [0.5, 1) . The variation of a is shown in Fig. 3. When the number of iterations i is 
less than kNi , the value of the convergence factor a is always 2, and when the number of 
iterations i is greater than kNi , the value of a decreases linearly. In this way, the upper 
bound of the range of A remains unchanged in the earlier iterations, indicating that the 
movement range of the wolves is always the whole region, thus increasing the ability of 
global search.

In terms of performance and cost consumption, the improvement of A can increase 
global search to a certain extent and avoid the risk of falling into local solutions. At the 
same time, changing the range of A only increases the possibility that some samples are 
far from the local optimal solution, but does not significantly increase the cost of time 
consumption.

5  Numerical results
In order to verify the effectiveness of the optimal station placement based on grey wolf 
optimizer for regional target localization proposed in this paper, some simulation exper-
iments are set up in this section. We localize a target that may appear within a certain 

(16)a =

{

2, 0 < i < kNi

− 2
Ni(1−k)

i + 2
1−k

, kNi < i < Ni
.

Fig. 3 Parameter improvement of convergence factor
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region under the two-dimensional TDOA mechanism of target localization. We use a 
mechanism of target localization in two-dimensional TDOA to localize a target that may 
appear within a certain region. We use the A-criterion optimization model of the overall 
CRLB localization error to find the optimal station placement method within a specified 
range.

In this paper, we address the problem of regional target localization and verify that 
the receiving station obtained by the proposed algorithm can obtain better localiza-
tion results. We set up two localization scenarios. Scenario 1 is near-field localization, 
where the distance between the target region and the stations is in the magnitude of 
102m . As shown in Fig. 4a, the target has a large range of activity (here it is assumed 
that the region in which it is likely to be found is a rectangular area, rectangular area of 

Fig. 4 Different station placement scenarios for localization
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800 × 250 m2 ), and the entire region of activity is relatively close to the receiving station. 
Scenario 2 is far-field localization, the distance in the magnitude of 103 m or more. As 
shown in Fig. 4b, the target’s range of activity is relatively small (it is assumed here that 
the area where it is likely to appear is a circular area, circle centred at (4000, 4000) m 
with a radius of 300 m), and the whole region of activity is far away from the receiving 
station. We are adding diversity by changing the shape of the target region. In Fig. 4, the 
red region is the range of the target, whose boundary values are indicated (with units of 
m), and the same for the blue region.

In this section, Sect. 5.1 focuses on verifying that the overall error model proposed 
in this paper is feasible and effective for the regional target localization problem, 
including experiments on the advantages of the model, the computational efficiency 
of the model in dealing with the problem, and experiments on the number of points 
of the model. Sections 5.2 and 5.3 mainly introduce the advantages of the algorithm 
for solving this problem, including the comparison between using the Grey Wolf opti-
mization algorithm and other algorithms, and the results after improving the grey 
wolf optimizer. Section 5.4 mainly verifies that the model and method of this paper 
are still applicable in a multi-station (more than 3 stations) scenario.

5.1  Experiments on station placement methods based on target region model

In this paper, we address the station placement problem for target localization, and fully 
consider the situation that the target may appear in a region. On this basis, we set up an 
error model for regional targets, which is different from the positioning station of single-
target points, and is not the accumulation of single-target errors. Therefore, we set up 
three methods to find out the optimal station placement, compare the localization errors 
after station selection, and verify the reasonableness and better performance of our pro-
posed regional target error model.

Three methods to find out the optimal station placement are as follows: 

1. Method 1 Use the position of the centre point in the whole region of the target activ-
ity as the localization point to establish the error matrix, and find out the optimal 
receiving station position.

Fig. 5 Localization error curves of different station placement methods
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2. Method 2 Use the objective function that minimizes the cumulative value of the 
errors of all the points in the target region, and find out the optimal receiving station 
position.

3. Method proposed The method proposed in this paper. Use the objective function that 
minimizes the A-criterion value of the overall error matrix in the target region, and 
find out the optimal receiving station position.

The three methods above led to the optimal three station locations under the experi-
ment of localization scenario 1 and scenario 2, and we used them respectively to localize 
the targets in the whole target region to obtain the theoretical error curves. In the simu-
lations, 500 points are uniformly picked as multiple targets for the entire target region T. 
We set the error values of the measured TDOA in the range of − 12 to 21 dB. The posi-
tion sampling within the target region is randomized and 1000 Monte Carlo simulations 
are performed. The error curves obtained are shown in Fig. 5, where Fig. 5a is the error 
curve in localization scenario 1 and Fig. 5b is the error curve in localization scenario 2. It 
can be seen from the experimental results that in the near-field condition, the final local-
ization accuracy of the error model method established in this paper is significantly bet-
ter than that of the other two methods. In the far-field condition, the proposed method 
is slightly improved.

From the error curves, we can see that the overall error matrix method proposed in 
this paper has a small improvement on the final localization results compared to the 
error accumulation of the single target as the objective function. At this point, we com-
pare their algorithmic time-consuming. We take 50, 100, 300, and 600 points in the 
region T as the potential locations of targets in the region, and then compute the opti-
mal receiving station locations using method 2 and the method in this paper and calcu-
late their time-consuming (we ensure that the optimization algorithm and other settings 
remain exactly the same). We first calculate the computing time of the two methods at 
20 iterations, which is the number of iterations for our simulation experiments. Then, 
we record the number of iterations until they converge to the optimum according to the 
error convergence curves of the two methods respectively, and observe the time con-
sumed at this number of iterations for the two methods.

Fig. 6 Comparison of time consumption of algorithms
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The experimental results of the algorithm time consumption are shown in Fig. 6, with 
(a) and (b) denoting the two scenarios of near-field and far-field, respectively. In the fig-
ure, we first compare the time consumption of the two methods for the same conditions 
under the full number of iterations, which are represented by two different coloured 
solid lines. In this case, the method proposed in this paper for region error modelling 
consumes less time than method 2 for the conditions of 50 and 100 points, but consumes 
more time than method 2 for the conditions of 300 and 600 points. It is analysed that 
this is due to the fact that the method in this paper establishes a regional error matrix, 
which will contain the errors of all the sampling points in the region. Therefore, when 
the sampling points are large, it will increase the operation time. However, this does not 
mean that the method in this paper is at a disadvantage in terms of time consumption. 
We study the error convergence of the two methods and find that the method in this 
paper will be faster than method 2 in convergence, that is, the optimal station location 
is obtained with fewer iterations. Therefore, we calculate the time consumed by the two 
methods at the converged location, which is represented by the dotted line in Fig. 6. It is 
clearly seen that the method of this paper for establishing regional targets consumes less 
time than method 2. To summarize, the method in this paper is advantageous in terms 
of the time consumed by the algorithm for obtaining the optimal station locations.

Then, we investigate the choice of the number of points in the target region. In the 
experiments comparing the time consumption, we have made changes to the target sam-
pling points in the target region, which is due to the fact that the number of points will 
inevitably affect the algorithm time. But whether the number of points has an impact on 
the localization performance brought by the station placement method in this paper is 
needed to be verified experimentally. We select the number of uniform sampling points 
of the region for the overall error modelling of the region as 1, 5, 10, 50, 100, 300, and 
600 to get the station placement results. These station location results are used to local-
ize the target in the region, at which 1000 more points are randomly taken from the 

Fig. 7 Localization error curves for modelling different number of points in the target region
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target region for simulation to calculate the localization error. The error of the TDOA 
measurements of this experiment is set to − 20 to 2 dB.

The experimental results are shown in Fig. 7, and it can be seen that the more points 
selected in the region model, the higher the localization accuracy of the station place-
ment results obtained. Under the premise of this experimental setup, the accuracy is 
basically consistent when the number of regional target points is above 300. In particu-
lar, when the number of regional target points is only one, which is the case of single-tar-
get localization, the localization error is larger at this time. This simulation experiment 
verifies that our model is reasonable, that is, when the target is active in a region, it is 
necessary to establish a regional target error model for station placement in order to 
achieve better localization results.

5.2  Comparison of grey wolf algorithm with other optimization algorithms

After verifying that the regional error model developed in this paper can bring more 
accurate localization performance and lower computational cost, we will use simula-
tion experiments to verify the advantages of the optimization algorithm used in this 
paper. In this paper, the station placement in the localization scenario of the regional 
target, using the grey wolf optimization algorithm can be a good balance between the 
global optimal solution and the optimization search time. We compare the optimiza-
tion algorithm proposed in this paper with the genetic algorithm and particle swarm 
optimization algorithm to observe their effects on the problem in this paper.

In this experiment, we take the overall error model of the regional target estab-
lished in the paper as a unified standard (the regional target samples 300 points), and 
carry out the receiving station optimization search with the genetic algorithm, par-
ticle swarm optimization algorithm, and the grey wolf algorithm mentioned in this 
paper, which are adopted for the established objective function. After obtaining the 
optimal station placement results, they are utilized to localize the target in the overall 

Fig. 8 Localization error curves of different optimization algorithms for station placement
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target region. At this time, the target still appears in the form of probability in the 
whole target region. We used 1000 Monte Carlo simulations to randomly select target 
points and then calculated their localization error curves under the condition that the 
error of TDOA measurements is − 20 to 2 dB.

The error curves of different optimization algorithms are shown in Fig. 8. It can be 
seen that the localization error of the station placement results obtained by the grey 
wolf algorithm and the particle swarm algorithm are basically similar, which is better 
than the traditional genetic algorithm. Then, we compare their algorithms time-con-
suming. We record the number of iterations of the different algorithms in obtaining 
the location of the station (it is the number of iterations when the error begins to con-
verge) as the time they take to obtain the best location. The calculated time consump-
tion is shown in Table 1. It can be seen that the grey wolf algorithm in this paper is 
able to converge to the optimal solution of the position faster when it is able to obtain 
almost the same localization error.

It is important to note here that for the grey wolf optimization algorithm, the inter-
nal parameter of total population size affects the time consumption of the algorithm, 
and the setting also has an impact on the accuracy of the final station location. Simi-
larly, the particle swarm algorithm has such internal parameters. These parameters can-
not be kept consistent, so we are only comparing the shortest time it takes to be able to 

Table 1 Time-consuming with different methods

Method Consuming 
time (s)

Genetic algorithm 60.62

Particle swarm optimizer 41.72

Grey wolf optimizer 33.87

Fig. 9 Theoretical CRLB values with improved optimization parameters
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obtain the best location. For example, in this problem, the grey wolf population can be 
set to 100 or 1000, but when it is set to 100, the optimal station location can already be 
obtained, so we calculate the time taken when the population is 100.

5.3  Parameter improvement of grey wolf algorithm

We have already mentioned the internal parameter of the grey wolf algorithm—the 
number of populations. When the population number is large, it is easy to complete the 
global search after random initialization. However, when the computer memory is lim-
ited, the population setting can only be relatively small. At this time, it is necessary to 
optimize the algorithm by tuning the external parameters of the grey wolf algorithm. 
According to the theoretical derivation in Sect. 4.3, we improve the algorithm by adjust-
ing the convergence factor a of the parameter A.

Firstly, we set the population number to 1000, and set the adjustment factor k of a to 
0.6 and 0.8 while other conditions remain unchanged. We observe the effect of the sta-
tion placement results obtained from their changes on the theoretical CRLB of localiza-
tion error. As shown by the theoretical localization error curve in Fig. 9, the adjustment 
of the optimization parameters of the grey wolf algorithm brings about a very weak 
improvement in the localization performance. Therefore, we conduct the experiment 
with the population number of 50 instead, and observe the localization error curves in 
the actual measurements when k is set to 0.6 and 0.8. As can be seen from the experi-
mental results in Fig. 10, the station placement results obtained by the improved algo-
rithm obviously have better localization performance. This is because the global search 
of the grey wolf algorithm may face the emergence of insufficient process when the num-
ber of populations is small, so we adjusted the value of k to improve the parameter a, 
which can better complete the global search and get better station placement results.

Fig. 10 Localization error curves with improved optimization parameters
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5.4  Experiments on expansion of station numbers

In the experiments above, the optimal receiving station selection for localization of 
regional targets is generally three stations, which also satisfies the minimum station 
requirement for 2D localization. However, for our proposed regional target localiza-
tion model and grey wolf optimization algorithm to find the optimal stations, more 
stations can also be selected for localization in the station area. For the background 
of the problem, we use a set of experiments to verify that under the method proposed 
in this paper, more than three stations can be obtained to localize the target region 
and the localization performance is reliable. We take the sampling points of the target 
region as 300 points, and the number of grey wolf populations is set to 1000 for opti-
mal station placement, and obtain the optimal station method of three, four and five 
stations, respectively, while other conditions remain unchanged. Then, their localiza-
tion error curves are calculated under the condition that the error of TDOA measure-
ment value is − 20 to 2 dB.

The experimental results are shown in Fig. 11, and the localization accuracy of the tar-
get region is roughly similar when different numbers of stations are deployed. That is 
to say, when we use the optimization algorithm in this paper to obtain the optimal sta-
tion locations, no matter how many stations, we can achieve better localization results. 
Therefore, the optimization algorithm to solve the problem in this paper is not only lim-
ited to obtaining the optimal location of three stations, but also can be four stations or 
more.

The actual significance of this experiment lies in the fact that there may be more 
receiving station scenarios in our actual localization. For example, in some scenarios, it 
is necessary to catalog the receiving stations according to the division of the target emer-
gence area, and strategically carry out the switch-on/switch-off behaviour of the receiv-
ing stations. It is like some communication wireless sensor network nodes that will need 
to be selected and repaired for environmental reasons [26].

Fig. 11 Localization error curves for different number of stations
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In summary, through the above experiments, we have verified the effectiveness and 
advantages of the overall error model established in this paper, as well as the perfor-
mance merits of the proposed improved grey wolf optimization algorithm.

6  Conclusion
The paper is mainly to propose an optimal station placement method based on the grey 
wolf optimizer for regional target localization. It established an objective function in 
terms of the overall error model of the target region and used the grey wolf algorithm to 
deal with the optimization problem of station placement. This paper analysed in detail 
the performance of solving this problem using the grey wolf algorithm and improved the 
optimization parameters to increase the ability of global search. Several sets of differ-
ent experiments verify the feasibility and reliability of the model and proposed method. 
In actual localization scenarios, the station placement method in this paper provides 
effective support when coping with the problem that the target may appear in a certain 
region for localization. It can quickly find the location of the station and obtain better 
localization accuracy.
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